现在位置:首页 > 通知公告
关于郭宝珠提名山东省自然科学二等奖的公示
2021-01-26 | 编辑:

  项目名称:不确定分布参数系统控制研究 

  提名者:山东师范大学 

  提名意见:我单位认真审阅了该项目的推荐书及附件材料,开心8怎样赚洗码费:确认全部材料真实有效,相关栏目符合山东省科学技术奖励委员会办公室的填写要求。按照要求,我单位和项目完成单位都已经对该项目的拟推荐情况进行了公示,公示期间无异议。该项目对不确定分布参数系统进行了深入研究,以自抗扰控制、滑模控制等为工具,取得了一系列高水平研究成果:1.首次将自抗扰控制应用于具有大规模不确定的分布参数系统,为不确定分布参数系统的镇定提供了新的思路;2.Lyapunov函数方法应用于不确定分布参数系统镇定,解决了具有外部干扰的弹性振动系统的输出反馈镇定问题;3. 利用自抗扰方法该项目解决了边界具有一般外部扰动的热方程的输出跟跟踪问题。该项目对自抗扰控制在分布参数系统中的应用做出了开创性贡献,为自抗扰控制在分布参数系统的工程应用提供了坚实的理论基础。研究成果获得国内外同行专家的广泛关注和高度评价。该项目符合山东省自然科学二等奖的提名条件,提名该项目为山东省自然科学二等奖。 

  项目简介: 

  系统控制的终极目标是设计反馈控制以克服系统的不确定,最终使得系统内部稳定,实现系统的性能输出跟踪参考信息,其中最大的困难就是抑制不确定。这是因为系统的数学建模很难实现精确的建模,而且外部干扰总是无处不在。典型如起重机,既要实现末端的精确抓举,又要克服机械臂的振颤,和因不同条件下的外部干扰。工业上许多的过程控制都是关于温度的控制,可是影响温度的许多因素很难在数学模型中体现。所以控制理论在1980年后有范式性的转移,即控制系统如何对付不确定。本项目由这些实际问题驱动,以期对分布参数系统,即用时间和空间描述的不确定系统设计反馈控制使得或者系统镇定,或者性能输出跟踪。项目主要的办法是自抗扰控制。这是一种干扰估计消除的聪明策略,本来是基于集中参数系统而提出的,要推广到分布参数有许多难以克服的困难。本项目首先取得理论上的突破,开启了自抗扰控制对于不确定分布参数系统控制的系列研究。主要成果如下。1. 首次将自抗扰控制应用于具有大规模不确定的分布参数控制系统的镇定控制;2. 解决了具有外部干扰的弹性振动系统的输出反馈镇定问题; 3. 对于含有外部一般有界干扰的热传导方程,我们设计了边界输出反馈控制器,达到系统性能跟踪。这些研究的对象是由偏微分方程描述的分布参数系统,是物理世界普遍的数学模型,典型的如热传导方程、波动方程、结构弹性梁的振动方程等,在各种机械力学、工程化学等学科中都有着广泛的应用。所得结果具有普遍性的指导意义。    

  代表性论文专著目录: 

  [1]F.F. Jin and B.Z. Guo, Performance boundary output tracking for one-dimensional heat equation with boundary unmatched disturbance,  Automatica, 96(2018),1-10. 

  [2]F.F. Jin and B.Z. Guo, Lyapunov approach to output feedback stabilization for Euler-Bernoulli beam equation with boundary disturbance, Automatica, 52(2015), 95-102. 

  [3]B.Z. Guo and F.F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Transactions on Automatic Control, 60(2015), 824-830. 

  [4]B.Z. Guo and F.F. Jin, The active disturbance rejection and sliding mode control approach to the stabilization of Euler-Bernoulli beam equation with boundary input disturbance, Automatica, 49(2013), 2911-2918. 

  [5]B.Z. Guo and F.F. Jin, Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input, IEEE Transactions on Automatic Control, 58(2013), 1269-1274. 

  主要完成人(完成单位)情况: 

  金凤飞, 2011年在中科院数学与系统科学学院获博士学位,2015年至今在山东师范学院数学与统计学院工作。主要研究兴趣为分布参数系统控制。 

  郭宝珠,中科院数学与系统科学学院研究员。  

  

附件下载:
 
 
【打印本页】【关闭本页】
电子政务平台   |   科技网邮箱   |   ARP系统   |   会议服务平台   |   联系我们   |   亚洲888真人
新葡京官方直营 利升国际棋牌官方 顶级游戏优惠办理 乐通唯一正网 乐通真人洗码
现金365网址 太阳国际信誉怎么样 八大胜网址 外围网站买篮球赢了30万 太阳城娱乐城82
同花顺官网 申博官网支付宝充值 澳门凯时娱乐场开户 www.sb2007.com 凤凰黑彩平台官网
太阳城手机APP骰宝游戏 申博现金官网电子游戏 申博正网代理 伟德最可靠赌场 菲律宾申博太阳城娱乐城现金网